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In this paper, a new clustering algorithm based on genetic algorithm (GA) with gene rearrangement
(GAGR) is proposed, which in application may effectively remove the degeneracy for the purpose of a
more efficient search. A new crossover operator that exploits a measure of similarity between chromo-
somes in a population is also presented. Adaptive probabilities of crossover and mutation are employed
to prevent the convergence of the GAGR to a local optimum. Using the real-world data sets, we compare
the performance of our GAGR clustering algorithm with K-means algorithm and other GA methods. An
application of the GAGR clustering algorithm in unsupervised classification of multispectral remote sens-
ing images is also provided. Experiment results demonstrate that the GAGR clustering algorithm has high
performance, effectiveness and flexibility.
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1. Introduction

Clustering [1–5] is an important unsupervised learning technique
where a set of patterns, usually vectors in a multidimensional space,
is used for identifying groups (clusters) of similar characteristics.
More specifically, in clustering, a set of patterns is grouped into
clusters in such a way that patterns in the same cluster are similar
in some sense and differentiate from those of other clusters in the
same sense. Clustering has been applied in a wide variety of fields
such as machine learning, pattern recognition, web mining, image
segmentation [1].

Traditional classifications of clustering algorithms primarily dis-
tinguish between hierarchical and partitional [1,2]. Here, we will use
a different categorization that is based on the clustering criterion
adopted by the algorithm [6]. In this sense, existing clustering algo-
rithms can be broadly divided into the following four classes.

The first class employs a local concept of clustering based on
the idea that neighboring data points should share the same clus-
ter. Algorithms implementing this principle are density-based meth-
ods [7,8], nearest neighbor methods [9] and methods like single
link agglomerative clustering [10]. These methods are well suited
to detect clusters of arbitrary shapes; however, they are not ro-
bust when there is little spatial separation between the clusters.
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The second class methods are generally implemented by keep-
ing intraclusters variation (i.e., variation between same-cluster data
points or between data points and cluster representatives) small.
This category includes algorithms like K-means [1–3], average link
agglomerative clustering [10], learning-network clustering [11–15],
and model-based clustering approaches [16,17]. These methods tend
to be very effective for spherical and well-separated clusters, but
they may fail for more complicated cluster structures.

The third class performs simultaneous row–column clustering.
Typical examples of this kind are biclustering algorithms [18–20].
The goal of these techniques is to identify subgroups of rows and sub-
groups of columns, by performing simultaneous clustering of both
rows and columns of the data matrix, instead of clustering these
two dimensions separately. Therefore, biclustering techniques pro-
duce local models, whereas clustering approaches compute global
models. The clusters identified by these algorithms are not mutually
exclusive or exhaustive. A data point may belongs to no cluster or
one or more clusters.

The fourth optimizes several validity measures that can cap-
ture the different characteristics of the data set. This kind of al-
gorithms can be subdivided into clustering ensembles [21–23],
which combine the resulting solutions into a single one with
better quality, and multiobjective clustering methods [18,24,25],
which provide an estimate of the quality of all individual clus-
teringsolutions and determine a set of potentially promising
clustering solutions. Though often more robust and yield higher
quality results than individual clustering methods, these algo-
rithms are not without drawbacks. Clustering ensembles operate
with homogenous objective functions. Therefore, good clustering
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results may become diluted by weak results in an ensemble. For the
multiobjective approaches, the construction of the promising solu-
tions set is a difficult conceptual problem, since clustering algorithms
often are not accompanied by a measure of the goodness of the de-
tected clusters. Each clustering result should be judged not only by
the clustering algorithm that generated it, but also by an external
assessment criteria.

Among the second class methods, the K-means algorithm is one
of the more widely used algorithms. However, it is well known that
K-means algorithm is sensitive to the initial cluster centers [3] and
easy to get stuck at the local optimal solutions [26]. Moreover, when
the number of data points is large, it takes enormous time to find the
global optimal solution [27]. In order to improve the performance
of the K-means algorithm, a variety of methods have been proposed
[28–30]. In this paper, we attempt to integrate a K-means algorithm
with a genetic algorithm (GA) to achieve a better performance.

GAs [31–33], an imitation of natural selection and survival of the
fittest, have been proved to be an efficient way in dealing with the
optimization problem. In the past years, several clustering algorithms
based on GA have been developed. These algorithms use different
representations for the clustering solutions. One kind methods uses
a straightforward encoding, in which the chromosome is encoded as
a string of length n, where n is the number of data points, and the
element of the chromosome denotes the cluster number that data
point belongs to, such as is used in Refs. [34,35]. This approach does
not reduce the size of the search space and searching the optimal
solution can be onerous when the data points proliferate. It is for this
reason that some researchers opt to use a relatively indirect approach
where the chromosome encodes the centers of the clusters, and each
data is subsequently assigned to the closest cluster center [36–41].
Tseng and Yang [42] proposes a GA for the clustering problem that is
suitable for clustering the data with compact spherical clusters. This
algorithm can automatically evolve the number of clusters. But the
number of clusters obtained is influenced by some parameters used
by the algorithm. In Refs. [43,44], a hyper-quadtree is employed to
denote a set of centers. The weakness of this approach is that the
need to establish the sets of centers occupying the same region of
space can be very time-consuming and prone to bad solutions when
such sets are inappropriately selected. Yet, other researchers are
seeking to the hybridization between GAs and K-means with interest
in using GAs to feature selection for clustering. In Refs. [45,46], GAs
are used to evolve the features serving as the input for the K-means
algorithm. The clustering solutions of K-mean algorithm are then
evaluated and the resulting objective function values are fed back
to the GAs. Two coevolutionary algorithms are used for the feature
weighting in Ref. [47].

Many of the clustering algorithms based on GAs described above
suffer from degeneracy. According to Radcliffe et al. [48], degeneracy
occurs when multiple chromosomes represent the same solution.
Degeneracy can lead to inefficient coverage of the search space as
the same configurations of clusters are repeatedly explored. Further-
more, it is shown that representation with less degeneracy results in
more efficient GAs with respect to clustering problems in Ref. [49].
In this paper, a genetic algorithm with gene rearrangement (GAGR)
is introduced to enhance the performance of clustering. In GAGR, the
degeneracy of chromosome is effectively removed, which makes the
evolution process converge fast. Furthermore, a distance measuring
the real-valued chromosome is introduced to define a new crossover
operator called path-based crossover, which builds a path between
two parent chromosomes.

The remainder of the paper is organized as follows. Section 2
provides some definitions necessary for our approach. Then a detail
of our GAGR clustering algorithm is presented in Section 3. The ability
of the GAGR clustering algorithm to avoid the degeneracy in the
evolution is demonstrated in Section 4. The experimental results are
given in Section 5. Finally, Section 6 offers conclusions.

2. Preliminaries

In this section, some definitions needed in the next section are
given. First, a distancemeasure for two vectors is defined. This is used
in the description of the path-based crossover. Then the definition
of gene rearrangement is presented.

Definition 1. Let x1 and x2 be two vectors in the N-dimensional
space RN . Then we say x1�x2 if x1(i)�x2(i), 1� i�N and x1 <x2 if
x1(i) <x2(i), 1� i�N.

Definition 2. Let x1,x2 be two vectors in RN . The distance between
x1 and x2 is defined as

Dist(x1,x2) =
N∑
i=1

di, (1)

where di = 1 if x1(i)�x2(i) and di = 0 if x1(i) = x2(i).

Definition 3. Define a new vector x1x2, where

x1x2(i) = max{x1(i),x2(i)}. (2)

Clearly, x1�x1x2 and x2�x1x2.

Definition 4. Let x1 and x2 be two vectors in RN and x1 �x2. If
x1(i) <x2(i) for some i, then let j be the smallest integer such that
x1(j) <x2(j), and define the function

(x1 ↑ x2)(i) =
{
x2(i) if i = j,
x1(i) otherwise.

(3)

If x1(t) >x2(t) for some t, then let k be the largest integer such that
x1(k) >x2(k), and define the function

(x1 ↓ x2)(i) =
{
x2(i) if i = k,
x1(i) otherwise.

(4)

In the following, wewill give an example for the above definitions.
If x1 and x2 represent two cluster results of a two-dimensional data
set which has three centers, then x1x2, (x1 ↑ x2) and (x1 ↓ x2) are
given in Table 1.

Definition 5. Let x and y be two vectors in RKN , and can be written
as

x = [x11, x12, . . . , x1N , x21, x22, . . . , x2N , . . . , xK1, xK2, . . . , xKN]

= [x1,x2, . . . ,xK ],

y = [y11, y12, . . . , y1N , y21, y22, . . . , y2N , . . . , yK1, yK2, . . . , yKN]

= [y1, y2, . . . , yK ],

Table 1
Example of above definitions

Function Example

x1 [0.1, 0.5, 1.2, 0.3, 0.6, 1.8]
x2 [0.3, 0.2, 0.9, 0.5, 0.4, 1.9]
x1x2 [0.3, 0.5, 1.2, 0.5, 0.6, 1.9]
x1 ↑ x2 [0.3, 0.5, 1.2, 0.3, 0.6, 1.8]
x1 ↓ x2 [0.1, 0.5, 1.2, 0.3, 0.4, 1.8]
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where xi = [xi1, xi2, . . . , xiN], yi = [yi1, yi2, . . . , yiN] and x is called as
referenced vector. Let P1 = {1, 2, . . . ,K} and P2 = ∅:
for i = 1 to K do

k = arg min
j∈P1,j /∈P2

‖yi − xj‖2

P1 = P1\k
P2(i) = k

end
then the elements of P2 will be a permutation of that of P1, and y
will be rearranged according to P2, i.e.,

y′
k = yP2(k).

This implies that the elements of y′ are rearrangement of
that of y.

In our algorithm, the chromosome which suffers from this trans-
formation is called chromosome with gene rearrangement.

Proposition 1. Let x1 and x2 be two vectors in RN . If x1 �x2 and
x1(i) <x2(i) for some i, then x1 ↑ x2 exists and

Dist((x1 ↑ x2),x2) = Dist(x1,x2) − 1.

The proof of this proposition is simple and may not deserve fur-
ther space.

3. The GAGR clustering algorithm

3.1. Chromosome representation

For any GA, a chromosome representation is needed to describe
each chromosome in the population. The representation method de-
termines how the problem is structured in the algorithm and the
genetic operators that are used. Each chromosome is made up of a
sequence of genes from certain alphabet which can consist of binary
digits (0 and 1), floating-point numbers, integers, symbols (i.e., A, B,
C, D), etc. In early GAs, the binary digit was used. It has been shown
that more natural representations can get more efficient and better
solutions. Michalewicz [32] has performed extensive experiments
comparing real-valued and binary GAs which indicates that the real-
valued GA is more efficient in terms of CPU time. Thus a real-valued
representation is utilized to describe the chromosome in this paper.

In this representation each of the centers of the clusters is en-
coded by the chromosome in the same way as that of [36]. Specif-
ically, each chromosome is described by a sequence of M = N ∗ K
real-valued numbers where N is the dimension of the feature space,
and K is the number of clusters. That is to say, the chromosome of
the algorithm is written as

M = [m11,m12, . . . ,m1N ,m21,m22, . . . ,m2N , . . . ,mK1,mK2, . . . ,mKN],

(5)

where the first N values represent the first cluster center, the second
N values represent the second center, and so forth.

3.2. Population initialization

In GAGR clustering algorithm, an initial population of size P can
be randomly generated and K data points randomly chosen from the
data set but on the condition that there are no identical points to
form a chromosome, presenting the K cluster centers. This process is
repeated until P chromosomes are generated. Only valid strings (i.e.,
those that have at least one data point in each cluster) are considered
to be included in the initial population.

After the population initialization, each data point is assigned to
the cluster with closest cluster center using the following equation:

xi ∈ Cj ↔ ‖xi − mj‖ = min
k

‖xi − mk‖, k = 1, 2, . . . ,K, (6)

where mk is the center of the kth cluster.

3.3. Fitness function

The fitness function is used to define a fitness value to each can-
didate solution. A common clustering criterion or quality indicator
is the sum of squared error (SSE) measure, defined as

SSE =
∑
Ci

∑
x∈Ci

(x − mi)
T(x − mi)

=
∑
Ci

∑
x∈Ci

‖x − mi‖2, (7)

where x ∈ Ci is a data point assigned to that cluster. This measure
computes the cumulative distance of each pattern from its cluster
center of each cluster individually, and then sums those measures
over all clusters. If this measure is small, then the distances from
patterns to cluster centers are all small and the clustering would be
regarded favorably. It is interesting to note that SSE has a theoretical
minimum of zero, which corresponds to all clusters containing only
a single data point.

Then the fitness function of the chromosome is defined as the
inverse of SSE, i.e.,

f = 1
SSE

. (8)

This fitness function will be maximized during the evolutionary pro-
cess and lead to minimization of the SSE.

3.4. Evolutionary operators

3.4.1. Crossover
Themain goal of the crossover operator is to create diversified and

potentially promising new chromosomes. It combines the features
of two parent chromosomes to form two offspring by swapping cor-
responding segments of the parents. The intuition behind the appli-
cability of the crossover operator is information exchange between
different potential solutions. In this algorithm, two crossover opera-
tors are used: path-based crossover and the heuristic crossover. The
crossover probability is selected adaptively as in Ref. [50]. Let fmax be
the maximum fitness value of the current population, f be the aver-
age fitness value of the population and f ′ be the larger of the fitness
of the individual to be crossed. Then the probability of crossover pc
is calculated as

pc = k1 × fmax − f ′

fmax − f
if f ′ > f ,

pc = k3 if f ′ � f , (9)

where the values of k1 and k3 are equal to 1 [50]. Clearly, when
fmax = f , then f ′ = fmax and pc will be equal to k3. The value of pc
increases when the individual is quite poor. In contrast when the
individual is a good solution, pc will be low so as to reduce the
likelihood of disrupting a good solution by crossover.

In the following, the definitions presented in Section 2 are used
to define a path-based crossover operator. Let M1 and M2 be two in-
dividuals in one generation. If M1 �M1M2, then (M1 ↑ M1M2) exists.
From the definition of ∗ ↑ ∗, it can be concluded that M1� (M1 ↑
M1M2). By Proposition 1, ifM1 �M2 andM1(i) <M2(i) for some i, then
(M1 ↑ M1M2) exists and it is closer (in terms of the distance defined
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by Definition 2) to M1M2 than M1 is. Therefore, we can construct a
series of individuals by iterative using Definition 4. Through the iter-
ation, a finite sequence M11 =M1, M12 = (M11 ↑ M1M2), . . . ,M1(n−1) =
(M1(n−2) ↑ M1M2) and M1n = (M1(n−1) ↑ M1M2)=M1M2 is obtained.
This sequence can be regarded as a path from M1 to M1M2. Simi-
larly, we can define a path from M1M2 to M2. Let M21=M1M2. Using
the definition of (M1 ↓ M2), sequence M21,M22, . . . ,M2m can be got-
ten where M21 = M1M2, M2i = (M2(i−1) ↓ M2), and M2m = M2. So a
path from M1 to M2 can be acquired by combining the two paths
discussed above.

The path-based crossover operator works by building a path
between two parent chromosomes. The children are two points
selected from this path. The selection method may be a random
selection, roulette wheel selection, tournament and so on. Here, we
select the best chromosome in term of the fitness and a random one.

In order to explain the path between two chromosomes more
clearly, an example is given. Let

M1 = [0.1, 0.5, 1.2, 0.3, 0.6, 1.8]

and

M2 = [0.3, 0.2, 0.9, 0.5, 0.4, 1.9]

be two clustering results of a two-dimensional data set which has
three centers, then

M1M2 = [0.3, 0.5, 1.2, 0.5, 0.6, 1.9]

and the path between M1 and M2 is

M11 = M1 = [0.1, 0.5, 1.2, 0.3, 0.6, 1.8],

M12 = (M11 ↑ M1M2) = [0.3, 0.5, 1.2, 0.3, 0.6, 1.8],

M13 = (M12 ↑ M1M2) = [0.3, 0.5, 1.2, 0.5, 0.6, 1.8],

M14 = (M13 ↑ M1M2) = [0.3, 0.5, 1.2, 0.5, 0.6, 1.9] = M1M2 = M21,

M22 = (M21 ↓ M2) = [0.3, 0.5, 1.2, 0.5, 0.4, 1.9],

M23 = (M22 ↓ M2) = [0.3, 0.5, 0.9, 0.5, 0.4, 1.9],

M24 = (M23 ↓ M2) = [0.3, 0.2, 0.9, 0.5, 0.4, 1.9] = M2.

There also exits a problem in the path-based crossover defined above.
When the parents are very close, the path-based crossover will make
the search process invalid. We say two parents are close, if the dis-
tance (defined by Definition 2) between them is smaller than a small
integer (e.g., 2). At this circumstance, other crossover should be used
to produce new chromosomes. Here we use the heuristic crossover
which utilizes the fitness information. Let x and y be two chromo-
somes to be crossed, then

x′ = x + r(x − y),

y′ = x, (10)

where r = U(0, 1), U(0, 1) is a uniform distribution on interval [0, 1]
and x is better than y in term of the fitness.

3.4.2. Mutation
Mutation arbitrarily alters one or more genes of a selected

chromosome, by a random change with a probability equal to the
mutation rate. The intuition behind the mutation operator is the
introduction of some extra variability into the population. Here,
the mutation probability is also selected adaptively as [50]. The
expression for mutation probability pm is given below

pm = k2 × fmax − f

fmax − f
if f > f ,

pm = k4 if f � f , (11)

where k2 and k4 are equal to 0.5, fmax and f are the same as defined
above, and f is the fitness of the chromosome under mutation. From

the expressions of pc and pm, it is seen that pc and pm will get
lower values for high fitness solutions and get higher values for
low fitness solutions. While the high fitness solutions aid in the
convergence of the GA, the low fitness solutions prevent the GA
from getting stuck at a local optimum. In order to prevent the GA
from getting stuck at a local optimum, the solutions with subaverage
fitnesses are employed to search the search space for the region
containing the global optimum. Such solutions are disrupted with a
high probability (pm =0.5) and new solutions are created. As a result
the algorithm will come out of local optimum. But for the solution
with the maximum fitness value, pc and pm are both zero. The best
solution in a population is transferred undisrupted into the next
generation. Together with the selection mechanism, this may lead
to an exponential growth of the solution in the population and may
cause premature convergence. To overcome this problem, a default
mutation rate (of 0.001) is introduced for every solution.

The mutation process adopted in this paper is the same as that
used in [36] which will be described as below. Let fmin and fmax be
theminimum andmaximum fitness values in the current population,
respectively. For an individual with fitness value f , a number � in
the range [−R,+R] is generated with uniform distribution, where

R =
⎧⎨
⎩

f − fmin

fmax − fmin
, fmax > f ,

1, fmax = f .
(12)

If the minimum and maximum values of the data set along the ith
dimension (i=1, 2, . . . ,N) are mi

min and mi
max, respectively, then after

mutation the ith element of the individual is given by
{
mi + � × (mi

max − mi), ��0,
mi + � × (mi − mi

min), � <0.
(13)

3.5. Description of the algorithm

In our GAGR clustering algorithm, a chromosome representing
the cluster centers is used and each chromosome is individually
evaluated by using the fitness function described in Section 3.3. In
the evolutionary loop, a set of individuals is selected for evolutionary
crossover and mutation. A roulette wheel selection of slots is used
to implement the selection process. The chance for a chromosome
to be selected is proportional to its fitness value.

The probability of evolutionary operator is selected adaptively.
The crossover operator transforms two individuals (parents) into two
offspring by combining parts from each parent. Herein two kinds
of crossover operators are used: path-based and heuristic crossover.
The mutation operator operates on a single individual and creates an
offspring by mutating that individual (see Section 3.4 for details on
evolutionary operators). The newly generated individuals are eval-
uated on the basis of the fitness function and form the new gen-
eration. In every generation, the chromosome with the best fitness
value is chosen as the referenced vector. Then other chromosomes
suffered from gene degeneracy will be rearranged using Definition
5. Each generation makes use of the elitist strategy [33] by replacing
the worst chromosome of current population with the best one seen
up to the previous generation. The process terminates after some
number of generations either by the user or dynamically by the pro-
gram itself, where the best chromosome obtained will be taken as
the best solution.

The GAGR clustering algorithm is described as follows:

1. Initialize a group of cluster centers with size of P, only valid
chromosomes (that have at least one data point in each cluster)
are taken into consideration. Each data point of the set is assigned
to the cluster with closest cluster center using the Euclidean
distance.
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2. Evaluate each chromosome and copy the best chromosome say
pbest of the initial population in a separate location.

3. If the termination condition is not reached, go to Step 4. Other-
wise, select the best individual from the population as the best
cluster result.

4. Select individuals from the population for crossover and muta-
tion.

5. Apply crossover operator to the selected individuals based on the
crossover probability.

6. Apply mutation operator to the selected individuals based on the
mutation probability.

7. Evaluate the newly generated candidates.
8. Compare the worst chromosome in the new population with pbest

in term of their fitness values. If the former is worse than the
later, then replace it by pbest .

9. Find the best chromosome in the new population and replace
pbest .

10. For the new population, select the best chromosome as a
reference, which other chromosomes might fall into the gene
rearrangement if needed.

11. Go back to Step 3.

4. Analysis of the efficiency of GAGR

In fact, the representations used in many clustering problems suf-
fer from degeneracy which can be avoided in the GAGR clustering
algorithm by the gene rearrangement. The degeneracy mainly arises
from a non-one-to-one correspondence between the representation
and the clustering result. For example,M1=[1.2, 2.1, 3.3, 3.3, 2, 3] rep-
resents a clustering result of a two-dimensional data set which has
three centers, while M2 = [3.3, 3.3, 2, 3, 1.2, 2.1] represents the same
clustering result for the same data set. Indeed, any permutation of the
centers gives rise to a chromosome that represents an identical clus-
tering result. If the two chromosomes described above are crossed
after the second position, then we get offspring [1.2, 2.1, 2, 3, 1.2, 2.1]
and [3.3, 3.3, 3.3, 3.3, 2, 3]. These two offspring are invalid since there
always exist two genes describing the same cluster. This leads to an
inefficient search. But through the gene rearrangement, this kind of
degeneracy will be avoided successfully. All the permutation of the
cluster centers described by the chromosomes can be transformed
into one representation which is the same as the referenced chro-
mosome.

Moreover, degeneracy always exists when the chromosomes
are not the same. In the following, we will take an example
to describe this problem. Let M1 = [1.1, 1.0, 2.2, 2.0, 3.4, 1.2] and
M2 = [3.2, 1.4, 1.8, 2.2, 0.5, 0.7], respectively, represent two clustering
results of a two-dimensional data set with three clusters in one
generation. If M1 is selected as the referenced vector, then M2 be-
comes M′

2 = [0.5, 0.7, 1.8, 2.2, 3.2, 1.4] after the gene rearrangement
described by Definition 5. Fig. 1 provides a crossover results of M1
and M2 (M′

2). From Fig. 1, we can see the performance of the chro-
mosome marked by triangles in the figure directly obtained from
crossing M1 and M2 is poor because of some confusion between the
two clusters while the one marked by circles in the figure obtained
from M1 and M′

2 is more efficient.
Therefore, there is a one-to-one correspondence between the

representation and the clustering result through the gene rear-
rangement. There is no degeneracy thus makes the algorithm more
efficient.

5. Experiments results

For the purpose of testing the performance of the GAGR cluster-
ing algorithm, experiments are conducted on both real-world data
from the UCI Machine Learning Repository [51] and multispectral
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Fig. 1. An example of degeneracy occurs through the crossover. Here, ∗ denotes the
chromosome M1, + denotes the chromosome M2 (M′

2), 
 denotes the chromosome
obtained by cross M1 and M2, ◦ denotes the chromosome obtained by cross M1

and M′
2.

remote sensing images, and the results show that GAGR has high
performance, effectiveness and flexibility.

5.1. Experiments on UCI data

In this section, the performances of the GAGR clustering,
GA-clustering [34], KGA-clustering [36] and K-means algorithms
are compared through the experiments based on the following six
real-world data sets that are used:

Iris: Iris data set consists of 150 data points distributed over three
clusters. Each cluster has 50 points. This data set represents differ-
ent categories of irises characterized by four feature values in cen-
timeters: the sepal length, sepal width, petal length and the petal
width. This data set has three classes, namely, Setosa, Versicolor and
Virginica among which the last two classes have a large amount of
overlap while the first class is linearly separable.

Wine: This is thewine recognition data consisting of 178 instances
with 13 features resulting from a chemical analysis of wines grown
in the same region in Italy but derived from three different cultivars.
The analysis determined the quantities of 13 constituents found in
each of the three types of wine.

Breast cancer: This data set consists of 683 sample points. Each
pattern has nine features corresponding to clump thickness, cell
size uniformity, cell shape uniformity, marginal adhesion, single ep-
ithelial cell size, bare nuclei, bland chromatin, normal nucleoli and
mitoses. There are two categories in the data.

Glass: This is the glass identification data set consisting of 214 data
points with nine features (the Id number feature has been moved).
The study of classification of types of glass was motivated by crimi-
nological investigation. There are six categories in this data set.

Balance: This data set contains 569 data points having four fea-
tures generated to model psychological experimental results. Each
example is classified as having the balance scale tip to the right, tip
to the left or be balanced. The attributes are the left weight, the left
distance, the right weight, and the right distance.

Liverdisorder: This data set contains 345 instances with six fea-
tures each. The data have two categories. The first five variables are
all blood tests which are thought to be sensitive to liver disorders
that might arise from excessive alcohol consumption.
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For convenience, we summarize the six sets in Table 2 with the
characteristics of the data sets. The three columns show the number
of data points M, the number of classes K, and the dimension of the
feature space d for each data set.

In the experiments, the population size is taken as 50. The
crossover and mutation probabilities for GA-clustering and KGA-
clustering algorithm are pc =0.8 and pm =0.001, respectively. All the

Table 2
Six UCI data sets used in our experiments

Data set M K d

Iris 150 3 4
Wine 178 3 13
Breast 683 2 9
Glass 214 6 9
Balance 569 3 4
Liverdisorder 345 2 6
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Fig. 2. Clustering results for the six UCI data sets. The figures plot the SSE obtained by the GA-clustering, KGA-clustering and GAGR clustering algorithm and averaged over
20 independent experiments: (a) iris; (b) wine; (c) breast cancer; (d) glass; (e) balance; (f) liverdisorder.

algorithms have the same initialization. The total number of gener-
ations is equal to 50 (except for GA-clustering algorithm). Executing
it further does not improve the performance. In the experiments,
each attribute of the patterns is standardized by dividing the sample
range of itself [52]. For comparison purpose, two different perfor-
mance measures are used: the average SSE of the population vs. the
number of iterations and the Rand Index [53].

The Rand Index [53] measures the agreement of the clustering
result with the true cluster structure. It counts the number of pair-
wise co-assignments of data items between the two partitions. Let
ns be the number of pairs of patterns that are assigned to the same
cluster in both the resultant partition and the true cluster structure,
and nd be the number of pairs of patterns that are assigned to dif-
ferent clusters in both the resultant partition and the true cluster
structure. The Rand index is defined as

RI = ns + nd
C2
n

= ns + nd
n(n − 1)/2

, (14)
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Table 3
The average number of iterations and the computation time to convergence for GA-clustering, KGA-clustering and GAGR clustering algorithms for 20 different runs for the
six real-life data sets

Data GA-clustering KGA-clustering GAGR clustering

Avg. number of iterations Computation time (s) Avg. number of iterations Computation time (s) Avg. number of iterations Computation time (s)

Iris 868.85 45.295 17.60 0.4494 6.95 0.3741
Wine 821.05 46.478 12.93 0.4960 6.35 0.4011
Breast 2108.45 235.368 8.12 0.4539 4.23 0.3372
Glass 534.60 23.867 16.60 0.5969 7.10 0.5613
Balance 2852.00 230.589 23.57 0.7442 10.03 0.6602
Liverdisorder 1229.9 71.706 17.730 0.4899 8.4 0.4451

The bold font are the best value for each data.

where n is the number of elements to be clustered. The Rand Index
return values in the interval [0, 1] and the optimum score is 1, with
higher scores being “better”.

The determination of the number of clusters is important in clus-
tering problem. Many methods have been proposed for identifying
the number of clusters automatically [15,42,54,55]. In this paper, a
simple method discussed in [5] is used to determine the number of
clusters. The SSE decreases monotonically with the cluster number. It
decreases rapidly until k= k̂, and decreases much more slowly there-
after until it reaches zero at k=n. Therefore, we examine the plot of
the SSE against the number of clusters K, and look for an inflexion
of the curve showing that little improvement in the description of
the data structure is to be gained above a particular value of K. Af-
ter determining the number of clusters, experiments are conducted
with the determined cluster number.

First, we compare the speed of convergence of the three GA-based
algorithms. For each data set we have conducted the experiment 20
independent trials with randomly generated initialization and the
average value recorded to account for the stochastic nature of the
algorithm. The average SSEs obtained by the three algorithms are
shown in Fig. 2 and the characteristic of the computation time in
Table 3.

From Fig. 2, it is seen that the GAGR clustering algorithm con-
verges to the desired value in a relatively fewer number of iterations
for all the data sets. It is also seen that GAGR clustering algorithm
provides some improvement in the SSE over the GA-clustering, and
KGA-clustering for some data sets. Table 3 gives the average num-
ber of iterations and the computation time (the experiments were
implemented on a machine running Windows XP, Intel (R) Xeon
(R) CPU, 2.33GHz) needed for convergence of GA-clustering, KGA-
clustering and GAGR clustering algorithm. As seen from Table 3, the
GAGR clustering algorithm converges in relatively fewer number of
iterations and shorter computation time.

In the following, the Rand Index is employed to compare the
performance of the three GA-based algorithms and the K-means. For
convenience, the result figures are given to compare the clustering
accuracy. Here, we only give the results of the first two data sets
as example. These two data sets after dimension reduction by using
the PCA [56,57] and the results obtained from the four algorithms
are shown in Figs. 3, 4, 5 and 6, respectively. Then, the mean and
variance of Rand Index for the six real-world data sets obtained by
the four techniques are given in Table 4 which illustrates the Rand
Index obtained by GAGR clustering algorithm is always better than
that obtained by the other algorithms for the same data sets.

For a more careful comparison among algorithms, the multivari-
ate analysis of variance (MANOVA) technique [58] is used to as-
sess the cluster differences between the actual clusters and those
obtained by K-means, KGA-clustering, GA-clustering and GAGR clus-
tering algorithm. MANOVA as a powerful statistical tool provides in-
formation on the nature and predictive power of the independent
measures. It gauges the group difference between two or more met-
ric dependent variables simultaneously, using a set of categorical
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Fig. 3. The two-dimensional iris data after dimension reduction.
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Fig. 4. The two-dimensional wine data after dimension reduction.

non-metric variables. Here, the categorical non-metric variables are
the cluster labels. The results are given in Table 5.

In the experiment, MANOVA tests the null hypothesis that the
mean of each group is the same dimensional multivariate vector,
and that any difference observed in the sample is due to random
chance. There are three outputs, d, p and a distance between the
groupmeans, in the experiment. If d=0, there is no evidence to reject
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Fig. 5. The cluster results of the iris data using: (a) K-means; (b) GA-clustering; (c) KGA-clustering; (d) GAGR.
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Fig. 6. The cluster results of the wine data using: (a) K-means; (b) GA-clustering; (c) KGA-clustering; (d) GAGR.
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Table 4
The maximum, mean and variance, and minimum values of Rand Index obtained by K-means, GA-clustering, KGA-clustering and GAGR algorithms for 20 different runs for
the six real-life data sets

Data K-means GA-clustering KGA-clustering GAGR clustering

Iris
Max 0.8623 0.8622 0.8737 0.8737
Mean 0.8292 ± 4.7873e − 4 0.8518 ± 7.2819e − 6 0.8588 ± 0.0013 0.8711 ± 1.2207e − 5
Min 0.7716 0.8564 0.8464 0.8623

Wine
Max 0.9265 0.9415 0.9415 0.9415
Mean 0.8413 ± 0.002 0.9368 ± 2.9083e − 5 0.9319 ± 6.9322e − 5 0.9388 ± 1.1011e − 5
Min 0.7339 0.9246 0.9120 0.9349

Breast
Max 0.9328 0.9486 0.9486 0.9486
Mean 0.9279 ± 5.2901e − 5 0.9482 ± 1.0325e − 6 0.9482 ± 1.0325e − 6 0.9486 ± 5.1899e − 32
Min 0.9121 0.9458 0.9458 0.9486

Glass
Max 0.5107 0.5308 0.5367 0.5367
Mean 0.3807 ± 0.0059 0.3878 ± 0.0052 0.3966 ± 0.0062 0.4047 ± 0.0055
Min 0.2556 0.2759 0.2683 0.2736

Balance
Max 0.5826 0.5827 0.5834 0.6075
Mean 0.5603 ± 1.9476e − 4 0.5642 ± 3.9543e − 4 0.5642 ± 1.4299e − 4 0.5646 ± 3.2559e − 4
Min 0.5215 0.5345 0.5296 0.5320

Liverdisorder
Max 0.5004 0.5014 0.5043 0.5050
Mean 0.4989 ± 2.5786e − 7 0.5004 ± 2.4456e − 7 0.5022 ± 2.5427e − 7 0.5031 ± 1.0624e − 6
Min 0.4984 0.4993 0.5021 0.5021

The bold font are the best value for each data.

Table 5
Result of MANOVA testing by K-means, GA-clustering, KGA-clustering and GAGR clustering algorithms on the data sets, here gm stands for Mahalanobis distance and
datanamei denotes the cluster number of the data set

Data K-means GA-clustering KGA-clustering GAGR clustering

d p gm d p gm d p gm d p gm

Iris1 0 1 0 0 1 0 0 1 0 0 1 0
Iris2 0 0.2640 0.2417 0 0.0909 0.3111 0 0.0927 0.3468 0 0.1077 0.2917
Iris3 0 0.0798 0.3143 0 0.2039 0.2830 0 0.0885 0.3374 0 0.2324 0.2696
Wine1 0 0.9756 0.1699 0 1 0 0 0.9997 0.0714 0 1 0
Wine2 0 0.9490 0.2165 0 0.9962 0.1090 0 0.9990 0.0584 0 0.9980 0.0949
Wine3 0 0.8546 0.3282 0 0.9834 0.1955 0 0.9982 0.1268 0 0.9938 0.1599
Breast1 0 0.9594 0.0169 0 0.9594 0.0169 0 0.9690 0.0157 0 0.9594 0.0169
Breast2 0 0.9992 0.0096 0 0.9999 0.0072 0 0.9998 0.0085 0 0.9999 0.0072

The bold font are the best value for each data.

Fig. 7. The first pseudocolor image of parts of MiYun obtained from Landsat-7
multispectral scanner composite by displaying band 5 as red, band 4 as green, and
band 3 as blue.

Fig. 8. The second pseudocolor image of parts of MiYun obtained from Landsat-7
multispectral scanner composite by displaying band 5 as red, band 4 as green, and
band 3 as blue.
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Fig. 9. The clustering results of the remote sensing image shown in Fig. 7 using: (a) K-means; (b) GA-clustering; (c) KGA-clustering; (d) GAGR.

the null hypothesis; while if d=1, we can reject the null hypothesis
that the means are the same but we cannot reject the hypothesis
that the multivariate means lie on the same line. Similarly, if d =
2, then the multivariate means may lie on the same plane in N-
dimensional space, but not on the same line. p is the probability,
computed assuming that the null hypothesis is true. The smaller the
p is, the stronger is the evidence against the null hypothesis provided
by the data. If p <0.05, then we will reject the null hypothesis. The
gm in Table 5 represents the Mahalanobis distance between each
pair of the group means.

It can be seen from Table 5 GAGR is able to find the first cluster
correctly (d=0, p=1, gm=0) for iris and wine data set. This signifies
that the means of data items forming cluster 1 after application of
the algorithms and the means of the actual cluster are the same.
K-means, GA-clustering and KGA-clustering algorithm only find the
first cluster correctly for iris data set. And all the algorithms can
not find the other two clusters accurately for the two sets. It is also
confirmed by the values of p. Although the values of d obtained are
0 but the result is not significant as the values of p are small. But
p value of GAGR is better than p values of all the other algorithms
for this two data sets. This is also evident from the fact that the gm
value obtained by GAGR is smaller than the gm values obtained by

all the other algorithms. For the breast cancer data set, GAGR, GA-
clustering and KGA-clustering algorithms perform similarly for both
clusters 1 and 2. For all the algorithms we get d = 0, but p values of
GAGR, GA-clustering and KGA-clustering are better than p values of
K-means algorithm.

5.2. Experiment on remote sensing image clustering

Remote sensing image analysis is attracting a growing interest in
real-world applications. The design of robust and efficient cluster-
ing algorithms becomes one of the most important issues addressed
by the remote sensing community. In this section, we will apply
K-means, GA-clustering, KGA-clustering and GAGR to the clustering
of multispectral remote sensing image based on the spectral data
of pixels. Although the remote sensing images usually have a large
number of overlapping clusters, the experimental results show that
the multispectral image can be effectively grouped into several clus-
ters by the proposed method.

In this experiment, the algorithms are used to partition dif-
ferent landcover regions in two remote sensing images. Two
512 × 512 remote sensing images of different parts of MiYun
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Fig. 10. The clustering results of the remote sensing image shown in Fig. 8 using: (a) K-means; (b) GA-clustering; (c) KGA-clustering; (d) GAGR.

Table 6
The SSE and validity index I obtained by K-means, KGA-clustering, GA-clustering and GAGR algorithms on the remote sensing images

Image K-means GA-clustering KGA-clustering GAGR clustering

First
SSE 6.3014e + 007 5.5711e + 007 5.3013e + 007 5.2901e + 007
I 35190.8620 36117.9402 36329.9851 36477.32

Second
SSE 9.4598e + 007 9.3736e + 007 9.2895e + 007 9.2073e + 007
I 9088.7062 9117.8326 10640.4371 10745.6446

The bold font are the best value for each data.

obtained from Landsat-7 have been chosen. The images consid-
ered have three bands in the multispectral mode: band 3—red
band, wavelength 0.63–0.69�m; band 4—near-infrared band, wave-
length 0.76–0.94�m; band 5—shortwave infrared band, wavelength
1.55–1.75�m. The pseudocolor images are shown in Figs. 7 and 8,
respectively.

From the pseudocolor images, it can be seen that the landcovers
of the images mainly contains five classes: water, vegetation (Veg),
mountain (Moun), residential areas (RA) and blank regions (BR). In
the experiment, we expect the four algorithms can partition the

remote sensing images into five visually distinct clusters. The num-
ber of population is set to 50 and the maximum generation 200. The
crossover and mutation probabilities are the same as those used in
the first experiment. The clustering results for the two images are
shown in Figs. 9 and 10 with gray scale, respectively.

As shown in Figs. 9 and 10, most of the landcover categories have
been correctly distinguished by the four algorithms. For example, the
mountain, the rivers in the residential areas and many other struc-
tures are identified by the clustering algorithm. So we can conclude
that GAGR clustering algorithm is an efficient clustering algorithm
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for differentiating the various landover types present in the image.
But it is difficult to distinguish the difference between the four al-
gorithms by the gray scale results. To evaluate the clustering results
more carefully, the SSE and the validity index I are used.

The validity index I [59] is used to measure the clustering
performance. It has been proposed as a measure of indication the
goodness/validity of a cluster solution. It is defined as follows:

I(K) =
(
1
K

× E1
EK

×DK

)p

, (15)

where EK=∑K
k=1

∑n
j=1 D(xj, ck) andDK=maxKi,j=1 {D(ci, cj)}. The power

p is used to control the contrast between the different cluster con-
figurations. Here, we let p=2 and it is the same as used in Ref. [59].
A larger value of I index implies a better solution. Note that for
computing the index I, knowledge about the true partitioning of
the data is not necessary.

The SSE and the I index values obtained by the four algorithms
are presented in Table 6. The values indicate the superiority of the
GAGR clustering algorithm which produces a better value of the SSE
and the I index values than those of other algorithms. Through the
experiments, it can be concluded that GAGR clustering algorithm is
a useful method for remote sensing image clustering.

6. Discussion and conclusions

In this paper, a GAGR has been developed for clustering. In the
GAGR clustering algorithm, each chromosome represents the cen-
ters of the clusters by a sequence of real-valued numbers. This is
more natural than the binary representation. In order to reduce the
degeneracy caused by different chromosomes describing the same
cluster result, a gene rearrangement of the chromosome has been
defined. In addition, a new path-based crossover operator which
builds a path from one chromosome to another chromosome has
been presented. These two processes allow our GAGR clustering to
explore the search space more effectively. Then, adaptive probabil-
ities of crossover and mutation are used to prevent the GAGR clus-
tering algorithm from getting stuck at a local optimal solution. The
superiority of the GAGR clustering algorithm over KGA-clustering,
GA-clustering and K-means algorithm has been demonstrated by the
experiments. Moreover, the GAGR clustering has been applied to the
multispectral remote sensing image for clustering the pixels into sev-
eral classes, which also illustrated its effectiveness and superiority.

Our future works include:

1. The number of clusters cannot be determined by the GAGR clus-
tering algorithm and this will limit its application in the real
world. Future work should be done to develop a mean that allows
an automatic identification of the number of clusters.

2. On the more theoretical side, an investigation of the path-based
crossover operator is needed.
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